

Electric wire rope hoists "VF" SERIES

For capacity from 1.000 to 50.000 kg

SILCOMNORTH UAB

www.silcomnorth.com hello@silcomnorth.com Phone +370 67216691 Antakalnio g. 17, Vilnius 10312, Lithuania

"Innovation by tradition"

offers the most modern technical-technological compendium in the global market, both reliable and economical, thanks to the long experience of our engineers of technical design and production of hoisting equipment. The electric wire rope hoists "VF" series, for capacity from 1.000 to 50.000 kg are designed and manufactured using cutting-edge design techniques such as 3D CAD system integrated with finite element calculations.

The electric wire rope hoists "VF" series overcome rigorous life and reliability testing in our modern "Experience Department", in order to assure compliance to the standard rules and project data, within the highest quality standards

WHT produces electric wire rope hoists "VF" in a A RIGOROUS highly serialized way, with the benefits of industrialized production processes controlled PROCESS CONTROL by a quality system conducted in compliance with UNI EN ISO 9001:2015

The electric wire rope hoists "VF" series, for capacity from 1.000 to 50.000 kg, are generally used to hoist an unquided load by means of a hook or other handling accessories. The electric trolleys "VT" series, single or double girder, suitable to run on a beam at high altitude, ensures the integrated handling of lifting and horizontal movements of the load when combined with a hoist.

THE ELECTRIC HOISTS "VF" SERIES AND THEIR **TROLLEYS "VT" SERIES**

The electric wire rope hoists "VF" series with related trolleys "VT" series can be singularly positioned on monorails or can constitute the lifting unit of other machines in which they have been incorporated such as jib cranes, bridges crane, etc.

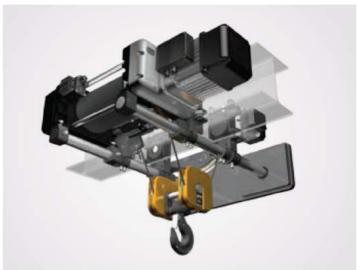
All the electric hoists "VF" series, for capacity from 1.000 to 50.000 kg are characterized by a modern and compact design ensuring maximum use of hook's work and are characterized by the following standard-features:

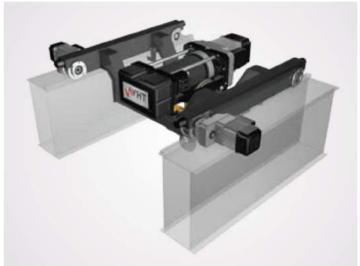
- High ratio between the drum diameter and the rope diameter, that is always more than 20, that is more than what is provided by the service group ISO M6 (FEM 3m);
- · Use of extra flexible ropes, characterized by high efforts resistance while increases therefore its life, implying an important reduction of maintenance costs and highest functional reliability
- · Left hand-lay threading of the drum, suitable for right hand-lay ropes more easily available on the market:
- Drive-tighten-rope Ring, in spheroidal cast iron, allowing to absorb without damage oblique pulls and ensuring the the rope within the drum's grooves preventing the exit from the pulley.

These solutions provide maximum safety for the operator as well as the maximum life of the rope, with the highest functional reliability and high reduction of the maintenance costs.

Safety and Reliability = 3 years warranty from the delivery date.

ELECTRIC WIRE ROPE HOISTS "VF" WITH 2,4 AND 8 ROPE FALLS = SAFETY AND RELIABILITY


The range of the electric wire rope hoists "VF" series



The range of the electric wire rope hoists "VF" series is produced in 4 sizes:

"VF1" - "VF2" - "VF3" - "VF4"

- For capacity from 1.000 to 50.000 kg;
- In the Service Group:
 - FEM 1am (ISO M4);
 - FEM 2m (ISO M5);
 - FEM 3m (ISO M6).
- At one and two hoisting speeds;
- For standard hoisting heights up to 48 m.

Standard execution:

Hoist in fixed execution with support bases; Hoist with single girder trolley in short headroom execution; Hoist with double girder electric trolley in normal execution and short headroom

Regulatory compliance

LEGISLATIVE FRAME The electric wire rope hoists "VF" series and related trolleys "VT" series are compliant to the Essential Requirements of Safety in attachment I of the Community Directive 2006/42/CE and are, therefore, provided with EC Declaration of Conformity of Annex IIA and CE marking in Annex III of the Directive.

> In addition, electric wire rope hoists "VF" and related trolleys "VT" comply with the Low Voltage Directive 2014/35/UE and the EMC Directive 2014/30/UE

REGULATORY FRAME

In the design and assembling of the electric wire rope hoists "VF" series and related trolleys "VT" series, were taken into consideration the following main technical standards and regulations:

EN ISO 12100:2010 "Essentials principles for design concepts"

EN ISO 13849-1:2008 "Parts of control systems related to safety"

EN 12385-4:2008 "Steel ropes-Safety-Part 4: Ropes for general use in lifting equipment"

EN 13135-1:2010 "Lifting equipment - Part 1 - Electro technical equipment"

EN 13135-2:2010 "Lifting equipment - Part 2 - Equipment not electro-technical"

EN 12077-2:2008 "Limiting and indicating devices"

EN 13001-1:2009 "Lifting equipment - General criteria for design - Part 1 - General principles and Requirements"

EN 13001-2:2011 "Lifting equipment - General criteria for design -

Part 2 - Loads actions"

EN 13001-3-1:2012 "Lifting equipment - General criteria for design -

Part 3-1 - Stress limit"

EN 14492-2:2009 "Lifting equipment - Part 2: Electric hoists"

EN 60204-32:2008 "Safety of the electric equipment of lifting machines"

EN 60529:1997 "IP enclosures"

ISO 4301-1:1988 "Classification of lifting equipment."

DIN 15400 "Choice of the lifting hooks - Mechanical properties and capacities"

DIN 15401 "Choice of the lifting point hooks"

FEM 1.001/98 "Calculation of the lifting equipment"

FEM 9.511/86 "Classification of the mechanisms"

FEM 9.661/86 " Choice of drums, ropes and sheaves"

FEM 9.683/95 "Choice of lifting and traverse motors"

FEM 9.755/93 "Periods of safe work"

FEM 9.761/93 "Overload devices"

FEM 9.941/95 "Controls symbols"

ENCLOSURE AND INSULATION OF ELECTRICAL **COMPONENTS:**

- · Lifting and travelling motors: IP55 protection Class "F" insulation
- Limit switches: IP65 minimum protection Maximum insulation voltage 500 V
- Cables: CEI 20/22 II Maximum insulation voltage 450/750 V
- · Protections and insulations different from standard are available on request.

• The electric wire rope hoists "VF" series and related trolleys "VT" series are **ELECTRIC POWER** suitable, in their standard equipment, to be supplied with alternate electric current SUPPLY: with three-phase voltage of 400 V +/- 10%.

- · Voltage and frequency different from standard, or execution with one-phase alternate current, are available on request.
- Working temperature: minimum 10° C; maximum + 40°C
- Maximum relative humidity: 90%
- Maximum altitude 2.000 m above sea level
- The hoist must be installed indoor, in a well-ventilated environment, free of corrosive vapors (acid vapors, saline mist, etc.).
- Special executions, for different environments or outdoor installations, are available on request.
- The noise level emitted by electric wire rope hoists "VF" series and related trolleys NOISE VIBRATIONS: "VT" series, in a fully loading condition, is always less than 75 dB (A), measured at 1 m of distance and at 1,6 m from the ground.
- · The vibrations produced by the hoist are not dangerous for the health of the workers.

WORKING AMBIENT CONDITIONS IN STANDARD EXECUTION:

Classification of the service group of the electric wire rope hoists "vf" series:

The electric wire rope hoists "VF" series are designed and classified according to standard EN 13001-1, in order to operate according to the parameters relating to the service group corresponding to FEM 1Am, 2m and 3m (FEM 9.511/86) or ISO M4, M5 and M6 (ISO 4301-1:1988).

The duty cycle of the motor is superior compared to the minimum requirements provided by rule FEM 9.683/95.

							Cm =	- AVERA	GE RUN	OF THE	ноок ((m)	WITH IN	TERMITTI	ENT USE	OF THE	HOIST								
											Two	SPEED	S HOIST	WITH D	OUBLE I	POLARITY	/ MOTOF	R AT 4/	12 POL	ES OR 4	1/16 P	OLES			
Но	IST SPEED		WITH S	INGLE P	PEED HO OLARITY 4 POLES	MOTOR			(FAST	MAIN S		OLES)		(SLOW (= 1/3	/ POLARI		POLES		RY SPEEI			TY 16 IE MAIN)
	(RI %)			60)%					40	%					20)%					20)%		
	DT-IID DED LICID				E]	1	20 [w	ітн 6 s	TARTING	X CYCL	E]	2	240 [w	/ITH 6 s	STARTING	X CYCL	.E]	2	240 [w	лтн 6 s	STARTING	X CYCL	.E]		
	($C/h = N^{\circ}$) Start-up per hour ($C/h = N^{\circ}$)		20	30	40	50	60	10	20	30	40	50	60	10	20	30	40	50	60	10	20	30	40	50	60
	2 m/min	3,6	1,8	1,2	0,9	0,7	0,6	2,4	1,2	0,8	0.6	0,4	0,4	0,3	0,1	0,1	=	=	=	0,2	0,1	0,1	=	=	=
	2,5m/min	4,5	2,2	1,5	1,1	0,9	0,8	3,0	1,5	1,0	0,8	0,6	0,5	0,4	0,2	0,1	=	=	=	0,3	0,1	=	=	=	=
E P	3 m/min	5,4	2,7	1,8	1,4	1,0	0,9	3,6	1,8	1,2	0,9	0,7	0,6	0,5	0,2	0,2	0,1	=	=	0,3	0,2	0,2	=	=	=
RUN (4 m/min	7,2	3,6	2,4	1,8	1,4	1,2	4,8	2,4	1,6	1,2	0,9	0,8	0,6	0,3	0,2	0,1	0,1	=	0,5	0,2	0,2	0,1	0,1	
HOOK MAIN S	5 m/min	9,0	4,5	3,0	2,3	1,8	1,5	6,0	3,0	2,0	1,5	1,1	1,0	0,8	0,4	0,3	0,1	0,1	0,1	0,6	0,3	0,2	0,1	0,1	0,1
Average hook run (m) With main speed of	6 m/min	11	5,4	3,6	2,7	2,1	1,8	7,2	3,6	2,4	1,8	1,4	1,2	0,9	0,5	0,3	0,2	0,2	0,2	0,7	0,3	0,2	0,1	0,1	0,1
AVE	8 m/min	14	7,2	4,8	3,6	2,8	2,4	9,6	4,8	3,2	2,4	1,8	1,6	1,2	0,6	0,4	0,2	0,2	0,2	0,9	0,5	0,3	0,1	0,1	0,1
	10m/min	18	9,0	6,0	4,5	3,5	3,0	12	6,0	4,0	3,0	2,3	2,0	1,5	0,8	0,5	0,3	0,3	0,3	1,1	0,6	0,4	0,2	0,2	0,2
	12m/min	22	11	7,2	5,4	4,2	3,6	14	7,2	4,8	3,6	2,7	2,4	1,8	0,9	0,6	0,3	0,3	0,3	1,4	0,7	0,5	0,2	0,2	0,2

Criteria of choice for the electric wire rope "VF" series

In order to choose the right hoist for the required service it's important consider the following factors:

- 1. The capacity of the hoist: is determined by the maximum load to lift
- 2. The loading rate (Q): is the stress level due to the percentage of use of the capacity (average of the loads to be lifted)
- 3. The average daily running time Tm (hours) and the maximum number of working cycles C_a, calculated with the following formulas:

$$Tm (hour) = \frac{2 \times Cm \times C/h \times Ti}{60 \times V}$$

$$C_A = C/h \times Ti \times G/year \times A$$

where: **Cm** = Corsa gancio effettiva (m) - E' la media delle effettive corse del carico

 $\mathbf{C}/\mathbf{h} = \text{Operating cycles (N}^{\circ} \text{ cycles per hour)} - \text{It's the number of complete up/down operations per hour}$

Ti = Hoist running time (hours) – It's the hoist running time in the whole day

V = Lifting speed (m/min) - It's the distance covered by the load in a minute

 $\mathbf{A} = \text{Years of service (}N^{\circ}\text{ years)} - \text{It's the number of years, not less than 10 , for which the life of the machine is calculated}$

In relation to the following use factors:

- · Loading rate (Q)
- Average daily running time (Tm)

Is determined the service group FEM/ISO.

The type of electric wire rope hoist "VF" series is selected, in the table "CHARACTERISTICS AND TECHNICAL DATA", according to the capacity of the hoist, as well as other factors, determined or calculated, that characterize the intended use (Loading rate, Average daily running time and Service Group FEM/ISO)

	Operating cycles	AND LIFE O	F THE MECHANISMS IN RE	ELATION TO	THE LOADING RATE (Q), the Average daily running time (Tm) and th	E SERVICE GROUP FEI	M/ISO
		, ,	ACCORDING TO EN 13 SERVICE GROUPS FEM (
FEM	1Am (ISO M4)	FEM	2m (ISO M5)	FEM	3m (ISO M6)	Operating cycles of the hoist	LIFETIME OF THE	AVERAGE DAILY
Q	% OF THE MAX. LOAD (% USE OF THE CAPACITY)	Q	% OF THE MAX. LOAD (% USE OF THE CAPACITY)	Q	% OF THE MAX. LOAD (% USE OF THE CAPACITY)	(n°)	HOIST (HOURS)	RUNNING TIME Tm (HOURS)
=	=	=	=	Q_0	> 25% \le 32%	$> 4.000.000 \le 8.000.000$	100.000	> 16
=	=	Q_0	> 25% \le 32%	Q ₁	> 32% \le 40%	> 2.000.000 \le 4.000.000	50.000	> 16
Q_0	> 25% \le 32%	Q	> 32% \le 40%	Q_2	> 40% ≤ 50%	> 1.000.000 \le 2.000.000	25.000	> 8 ≤ 16
Q_1	> 32% \le 40%	Q_2	> 40% ≤ 50%	Q_3	> 50% \le 63%	> 500.000 \le 1.000.000	12.500	> 4 \le 8
Q_2	> 40% \le 50%	Q_3	> 50% \le 63%	Q_4	> 63% \le 80%	> 250.000 ≤ 500.000	6.300	> 2 ≤ 4
Q_3	> 50% \le 63%	Q_4	> 63% \le 80%	Q_5	>80% ≤ 100%	> 125.000 ≤ 250.000	3.200	> 1 ≤ 2
Q_4	> 63% \le 80%	Q_5	>80% ≤ 100%	=	=	> 63.000 ≤ 125.000	1.600	> 0.5 ≤ 1
Q_5	>80% ≤ 100%	=	=	=	=	> 32.000 ≤ 63.000	800	> 0.25 ≤ 0.5

Example:

Maximum load: 5000 kg

 \rightarrow Capacity of the hoist "VF" = 5000 kg

Average of the loads to be lift: 3000 kg

→ Loading rate = Q3

• Average of the used lifting height: 1,5 m

→ Real lifting height Cm = 1,5

(corresponding to class $D_{lin 2}$ of the standard EN 13001-1)

• Up/down lifting operations per hours

 \rightarrow N° cycles per hours C/h = 20

• Use on a working shift

→ Ti (hours) = 8

• Lifting speed: 4/1,3 m/min

→ Main speed V = 4

• Working days per year: 250

 \rightarrow D/year = 250

Calculation of the average daily running time (hours) of daily use:

$$Tm = \frac{2 \times Cm \times C/h \times Ti}{60 \times V} = \frac{2 \times 1,5 \times 20 \times 8}{60 \times 4} = 2 \text{ hour}$$

Calculation of the number of operating cycles (CA) carried out in 10 years:

$$C_A = C/h \times Ti \times G/year \times 10 = 20 \times 8 \times 250 \times 10 = 400.000 \text{ cycles}$$
(class U5 - EN 13001-1)

On the basis of the determined and calculated factors, the service group is:

Q3 - U5 - Dlin 2 according to the standard EN 13001-1, corresponding to FEM 2m (ISO M5).

Therefore, the electric wire rope hoist "VF" series suitable for the use shall be:

24ND-N

Electric trolleys "VT" series in standard execution

Electric single girder trolley with electric wire rope hoist "vf" series short headroom execution

ELECTRIC TROLLEYS "VT" SERIES

complete and equip the electric wire rope hoists series "VF", allowing the horizontal movement of the load.

They are available as standard in the following executions:

- short headroom electric single girder trolley
- standard electric double girder trolley
- short headroom electric double girder trolley

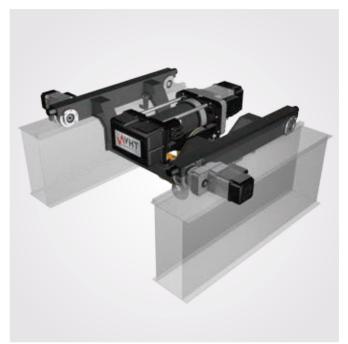
SHORT HEADROOM ELECTRIC SINGLE GIRDER TROLLEY

Runs on the lower flange of a beam (monorail or single girder crane).

Among the different types of construction, the short headroom execution of the trolley allows the use of the maximum lifting height of the hoist.

The structure of the trolley is composed by four supporting plates, one drive and three idle, on which are supported the travelling wheels. The steel plates, obtained by laser cutting, pressed and bent, are shaped so as to obtain the anti-derailment and anti-drop devices.

According to the width of the beam, both the drive plate and the idle plates are sliding and adjustable, by means of brackets and locking dowels, along supporting bars steel circular cross-section calibrated. The bars also support, both the electric wire rope hoist series "VF," that is supported and fixed by suitable brackets, and the counterweight able to balance the eccentric mass of the hoist.


The wheels are made of machined pressed steel and rotating on ball bearings constantly lubricated. They haven't flanges because the alignment of the trolley on the beam is ensured by steel roller guides, rotating on life lubricated bearings.

The drive wheel is powered by a asynchronous three-phase cylindrical rotor with electromagnetic brake, with progressive starting and braking at one or two speeds and single or double polarity.

The motor is coupled to a reduction gear, with gears with helical teeth with permanent lubrication in oil bath, within whose broached shaft is inserted the splined shaft integrated with the drive wheel itself.

Electric double girder trolley with electric wire rope hoist "vf" series standard execution

Electric double girder trolley with electric wire rope hoist "vf" series short headroom execution

As standard, the short headroom single girder trolleys are equipped with limit switches to delimit the transverse run, with emergency buffers consisting of four dumper buffers in rubber with high absorption of energy.

Runs on the rails placed over two beams (double girder) and is available as standard with span of 1,000 mm or 1,200 mm, both in the standard and short headroom execution. The trolley structure is composed by a frame made of welded steel tubes with square section, on which are supported the travelling wheels and the electric wire rope hoist "VF" series.

The trolley movement is ensured by four machined wheels in spheroidal cast iron (GJS 700), two-drive, with double flange rotating life lubricated.

The drive wheels are powered by a asynchronous three-phase cylindrical rotors with electromagnetic brake, with progressive starting and braking at one or two speeds and single or double polarity.

The motor is coupled to a reduction gear, with gears with helical teeth with permanent lubrication in oil bath, on which is connected a transmission bar integrated with the drive wheels themself.

As standard, the double girder trolleys are equipped with limit switches to delimit the transverse run, with emergency buffers consist of two couples of dumper buffers in rubber with high absorption of energy as well as four anti-derailment and anti-drop devices.

For all the trolleys "VT" series is available, as optional, the towing arm that connects the trolley to the power supply line. It's easily adjustable in all directions and prevents the tearing of the conductors.

ELECTRIC DOUBLE GIRDER TROLLEY

TOWING ARM

Electric wire rope hoists "VF" series in standard execution

SELF-BREAKING MOTOR

Asynchronous three-phase cylindrical rotor. The casing, made of light alloy, has radiating fins that guarantee high thermal dissipation . The motor is provided in the standard equipment with thermal probes for the protection against overload. The motor is also externally cooled by means of self-ventilation and is produced with single polarity (one speed hoist) or double polarity (two speeds hoist). The brake (electromagnetic with direct current) is designed for a high number of starting and the braking gasket is free of asbestos . The brake is of negative type: that means that it is automatically inserted in case of power failure. Is designed to allow the maximum lifting height of the hook, and to withstand to efforts and wear for the whole lifetime expected by the selected service group FEM/ISO.

The gear has parallel axes with three stages, with heat shrink between pinions/shafts and their crowns, it is totally closed and contained in boxes in cast iron and cast light alloy. The cylindrical gears with helicoidally teeth are thermally treated and made of highly resistant steel. The gears are mounted on spherical bearings and are constantly lubricated in an oil bath.

GEAR

REDUCTION

Made of steel tube, left hand-lay mechanically grooved, suitable for the perfect housing **DRUM** of the right hand-lay standard rope. The drum, by means of flanges with hubs rotating on lubricated bearings, is supported on the reducer casing while, in the opposite side, is

supported by the casing site of the electrical connections.

Both casing are provided of support feet for the fixing of the hoist and they support also the oscillating beams, both the one where the pulley is and the one containing the anchorage cross head with the overload device.

The casings of the drum are connected by means of screwed staybolts.

ROPE Made of extra flexible steel, characterized by high resistance to strain and wear, with resistance and safety coefficient according to the Standards EN 12385-4 and ISO 4308-1.

> On the electric wire rope hoists "VF" series with drum extra-long, drum lenght E1 and E2, are used non-twist ropes

ROPE GUIDE

Made of a ring composed by two half-rings in cast iron, left hand-lay mechanically grooved in order to match the drum. It guarantees the right inserting and unfolding of the rope.

The function tighten-rope against the loosening is assured by plastic slides that, fitted into the rope guide and located on the external circumference of the rope, are locked around the rope by means of a spring.

HOOK-BLOCK WITH HOOK

Provided with pulleys made in carbon steel with rim grooved mechanically.

The pulleys, rotating on permanently lubricated bearings, are inserted and protected into steel casings suitable designed in order to reduce risks of crushing between the rope and the rim of the pulley itself.

The load single hook, rotating on a thrust bearing, is made in high resistance forged steel and is equipped with safety latch against the accidental release of the load. The hook is fitted on a swinging support.

PULLEY

TRANSVERSE Used only in the electric wire rope hoists "VF" series at 4 and 8 falls, is made of a composed structure where the pulley is located. The pulley is made in carbon steel with rim grooved mechanically. The pulley is rotating on permanently lubricated bearings. The transverse has two support pivots that permit the arranging on the axis of the rope.

ANCHORAGE CROSS HEAD

Is made by a composed structure where are located the terminal wedge and the overload device. The transverse has two support pivots that permit the arranging on the axis of the rope.

TERMINAL WEDGE

It is the fixing device of the terminal rope to the anchorage cross head. It includes a body composed by two plates connected by means of screws, within are located in a floating manner two jaws and the wedge which, by tightening the rope over a large surface, they ensure the best fit and a sure seal within the body of the terminal wedge.

OVERLOAD DEVICE

It is a security device that avoids potentially dangerous situations due to accidental overloads. The overload device, of electromechanical type, is supplied as standard with one tripping threshold set in order to never exceed the value of 125% of the nominal load, as provided by the Standard EN 14492-2, allowing the use in safety of the hoist. On request, the overload device can be supplied with two tripping thresholds and/or different settings.

LIMIT SWITCH

It's a safety device to avoid dangerous situations due to lack of control of the hook run in up/down movement. The electric limit switch (rotary type) is connected with the axe of the drum. It is composed by two precision micro-switches working according to the principle of "slow positive opening" and work on the auxiliary circuit of the control device of the lifting motor.

It is fitted inside the connecting module and is protected against the atmospherics agents (IP 55 protection), it is easy to be calibrated and inspected. On request, the limit switch con be supplied with two tripping thresholds where the second can be connected to the auxiliary circuit of the line contactor or act as selector switch.

Equipped with connection box, cable glands and proper terminal board, allows easy and efficient wiring of the electrical connections of the hoist and trolley motors. The box of the electrical connections (and/or of the low voltage control equipment) is equipped with a cover made of self-extinguishing thermoplastic material, with gasket designed to ensure the degree of protection IP 55 according to EN 60529.

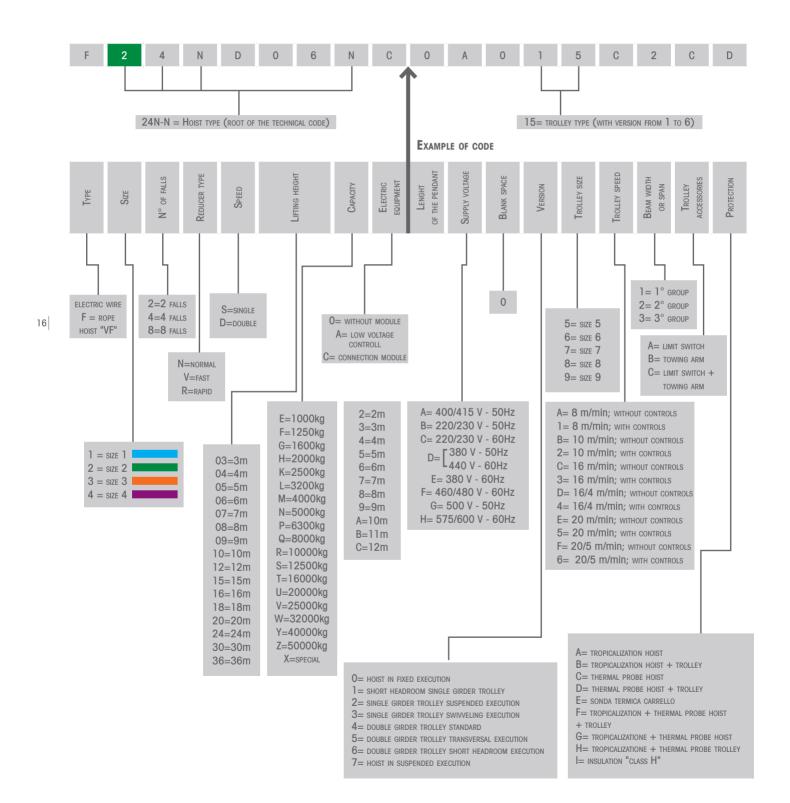
BOX ELECTRICAL CONNECTIONS

In order to activate the up and down functions and, when provided, the right and left functions of the electric trolley. Is designed and made in compliance with the standard EN 60204-32, while the choice of the components is compliant with the standard EN 60947-5-1.

ELECTRICAL CONTROLS

The electrical control, positioned in its own box into the hoist, includes:

- Auxiliary circuits in low voltage 110 V in CA, powered by mono-phase transformer, Power circuits (power supply and motors) suitable for three-phases in CA max. 500 V and Equipotential ground circuit;
- Mono-phase transformer for the power supply of the low voltage circuit, in compliance with EN 61558 standard;
- General line contactor designed in AC2 and Contactors for motor power control, designed in AC3, with electric and mechanic block between opposite functions as well as the contactors for polarity change in case of hoists and/or trolley with two speeds
- · Protections of main and auxiliary circuits of the transformer;
- Terminal block for the connections of the auxiliary and power circuits, Glands for getting in and out of all the users (main power, motors, push button panel, limit switches), equipped with minimum grade protection IP 55, in comply with the standard EN 60529;
- Push- button panel with its relative cable equipped with:
 - ergonomic shape easily gripping, equipped with controls of immediate access requiring low operating forces;
 - external protection box made in shockproof thermoplastic self-extinguishing material, waterproof with protection grade IP 67, in compliance with the EN 6052 standards;
 - function buttons with kept action, protect against the accidental control, with electric block and functions remarkable by symbolism in comply with the regulation FEM 9.941/95;
 - emergency stop, in compliance with EN 418 and EN 60947-5-1 standards, made up by a red mushroom-head button which puts the control circuit in the forward position by using an intentional release action;
 - multipolar electric cable, fire retardant type, equipped with tear proof metallic parts for the push button panel suspension.


Standard range of the electric wire rope hoists "VF" series

TECHNICAL CODE

The characteristics of the hoist and relative trolley are defined by a code of 18 positions, as shown in the following reading key with example.

The second, third, fourth and eighth position of the code constitute the

"Root of the technical code" that defines typologically the wire rope hoist "VF".

THE AVAILABLE RANGE On the basis of the capacity, service group FEM (ISO) and main speed, the table shows, through the "root of the technical code" the available range of wire rope hoists "VF" in different sizes.

CAPACITY			um (ISO N (m/min)					m (ISO N (m/min)						m (ISO M (m/min)		
	8 FALLS	4 FALLS	2 F	ALLS	8 F	ALLS	4 F	ALLS	2 F	ALLS	8 F	ALLS	4 F	ALLS	2 F	ALLS
(kg)	2,5	5	8	10	2	3	4	6	8	12	2	3	4	6	8	12
1000										12R-E						
1250															12N-F	12R-F
1600									12N-G	12R-G				14R-G		
2000			12N-H					14R-H							22N-H	22R-H
2500									22N-K	22R-K			14N-K	14R-K	32N-K	32R-K
3200			22N-L				14N-L	14R-L	32N-L	32R-L						
4000													24N-M	24R-M	32N-M	32R-M
5000							24N-N	24R-N	32N-N	32R-N			34N-N	34R-N		42R-N
6300			32N-P				34N-P	34R-P		42R-P					42N-P	
8000									42N-Q	42R-Q			34N-Q	34R-Q		
10000							34N-R	34R-R	42N-R	42R-R	38N-R	38R-R		44R-R		
12500				42V-S	38N-S	38R-S		44R-S					44N-S			
16000							44N-T	44R-T			38N-T	38R-T				
20000					38N-U	38R-U	44N-U	44R-U				48R-U				
25000		44V-V				48R-V					48N-V					
32000					48N-W	48R-W										
40000					48N-Y	48R-Y										
50000	48V-Z															

Features and technical data

			EL	ECTRIC WIRE R	OPE HOISTS "V	F" SERIES								ELECTR	IC TROLL	EYS "VT	" SERIES	
0	1)	2)	3)	4)	SERVICE G	ROUP FEM	Ro)PE	L	IFTING HE	EIGHT (M	1)			TROLL	EY TYPE		
CAPACITY	SPEED	Hoist	INSTALLED POWER	Motor	Hoist	Motor	FALL	Ø		WITH D	RUM SIZE		Mon	ORAIL VE	RSION	Bıı	RAIL VERS	SION
kg	m/min	Түре	kW	Түре	ASSEMBLY	Brake Ø drum	N°	mm	1	2	3	4	1	2	3	4	5	6
1000	12	12RS-E	2,3	112	2m	>3m	2/1	7	12	20	37	47						
1000	12/3,9	12RD-E	2,3/0,73	112	3m	>3m	2/1	7	12	20	37	47						
	8	12NS-F	2,3	112	3m	>3m	2/1	7	12	20	37	47						
1250	8/2,6	12ND-F	2,3/0,73	112	3m	>3m	2/1	7	12	20	37	47						
	12	12RS-F	3,6	132	3m	>3m	2/1	7	12	20	37	47						
	12/3,9	12RD-F	3,6/1,15	132	3m	>3m	2/1	7	12	20	37	47						
	6	14RS-G	2,3	112	3m	>3m	4/1	7	6	10	15	20						
	6/1,9	14RD-G	2,3/0,73	112	2m	>3m	4/1	7	6	10	15	20	15	25	35			
1600	8	12NS-G	2,3	112	2m	>3m	2/1	7	12	20	37	47						
	8/2,6	12ND-G	2,3/0,73	112	2m	>3m	2/1	7	12	20	37	47						
	12 12/3.9	12RS-G 12RD-G	3,6 3,6/1,15	132	2m 2m	>3m >3m	2/1 2/1	7	12 12	20	37 37	47 47						
	6	14RS-H	2,3	112	2m	>3m	4/1	7	6	10	15	20						
	6/1.9	14RD-H	2,3/0,73	112	2m	>3m	4/1	7	6	10	15	20						
	8	12NS-H	3.6	132	1Am	>3m	2/1	7	12	20	37	47						
	8/2,6	12ND-H	3,6/1,15	132	1Am	>3m	2/1	7	12	20	37	47						
2000	8	22NS-H	3.6	132	3m	>3m	2/1	9	12	20	37	47						
	8/2,6	22ND-H	3,6/1,15	132	3m	>3m	2/1	9	12	20	37	47						
	12	22RS-H	5,4	160	3m	>3m	2/1	9	12	20	37	47	16	26	36			
	12/3,9	22RD-H	5,4/1,7	160	3m	>3m	2/1	9	12	20	37	47						
	4	14NS-K	2,3	112	3m	>3m	4/1	7	6	10	15	20				46	F.C.	
	4/1,3	14ND-K	2,3/0,73	112	3m	>3m	4/1	7	6	10	15	20	45	05	25	46	56	66
	6	14RS-K	3,6	132	3m	>3m	4/1	7	6	10	15	20	15	25	35			
	6/1,9	14RD-K	3,6/1,15	132	3m	>3m	4/1	7	6	10	15	20						
	8	22NS-K	3,6	132	2m	>3m	2/1	9	12	20	37	47						
2500	8/2,6	22ND-K	3,6/1,15	132	2m	>3m	2/1	9	12	20	37	47	16	26	36			
	12	22RS-K	7,2	160	2m	>3m	2/1	9	12	20	37	47						
	12/3,9	22RD-K	7,2/2,25	160	2m	>3m	2/1	9	12	20	37	47						
	8	32NS-K	5,4	160	3m	>3m	2/1	13	12	20	37	47						
	8/2,6	32ND-K	5,4/1,7	160	3m	>3m	2/1	13	12	20	37	47	17	27	37			
	12/2.0	32RS-K	7,2	160	3m	>3m	2/1	13	12	20	37	47						
	12/3,9 4	32RD-K	7,2/2,25 2,3	160 112	3m	>3m	2/1 4/1	13	12 6	20 10	37 15	47 20						
	4/1,3	14NS-L 14ND-L	2,3/0,73	112	2m 2m	>3m >3m	4/1	7_	6	10	15	=						
	6	14ND-L	3,6	132	2111 2m	>3m	4/1	7	6	10	15	20	15	25	35			
	6/1,9	14RD-I	3,6/1,15	132	2m	>3m	4/1	7_	6	10	15	20						
	8	22NS-L	5,4	160	1Am	>3m	2/1	9	12	20	37	47						
3200	8/2,6	22ND-L	5,4/1,7	160	1Am	>3m	2/1	9	12	20	37	47	16	26	36			
	8	32NS-L	5,4	160	2m	>3m	2/1	13	12	20	37	47						
	8/2,6	32ND-L	5,4/1,7	160	2m	>3m	2/1	13	12	20	37	47						
	12	32RN-L	7,2	160	2m	>3m	2/1	13	12	20	37	47	17	27	37			
	12/3,9	32RD-L	7,2/2,25	160	2m	>3m	2/1	13	12	20	37	47						

 $^{^{1)}\ \}text{The stated speed are referred to frequency of } 50\ \text{Hz}$

Motor type 71 ⁴⁾

Motor type 90 ⁴⁾

 $^{^{2)}}$ Type of hoist defined by the "root of the technical code" with the addition of speed (S or D)

 $^{^{\}rm 3)}\,\text{The}$ stated powers are referred to supply voltage of $400\;\text{V}$ at $50\;\text{Hz}$

 $^{^{4)}}$ The electrical characteristics of the motors are stated at a pag. 30

			EL	ECTRIC WIRE R	OPE HOISTS "V	F" SERIES								ELECTR	IC TROLL	EYS "VT	" SERIES	
0.0.000	1)	2)	3)	4)	SERVICE GI	ROUP FEM	R	OPE	L	IFTING HE	ight (m	1)			TROLLI	EY TYPE		
CAPACITY	SPEED	Hoist	INSTALLED POWER	Моток	Hoist	Motor	FALL	Ø		WITH D	RUM SIZE		Mon	NORAIL VE	RSION	Bıı	RAIL VERS	SION
kg	m/min	Түре	kW	Түре	ASSEMBLY	Brake Ø drum	N°	mm	1	2	3	4	1	2	3	4	5	6
	4	24NS-M	3,6	132	3m	>3m	4/1	9	6	10	15	20						
	4/1,3	24ND-M	3,6/1,15	132	3m	>3m	4/1	9	6	10	15	20	16	26	36			
	6	24RS-M	5,4	160	3m	>3m	4/1	9	6	10	15	20	16	26	30			
4000	6/1,9	24RD-M	5,4/1,7	160	3m	>3m	4/1	9	6	10	15	20						
4000	8	32NS-M	7,2	160	3m	>3m	2/1	13	12	20	30	47						
	8/2,6	32ND-M	7,2/2,25	160	3m	>3m	2/1	13	12	20	30	47	17	27	37			
	12	32RS-M	11,5	180	3m	>3m	2/1	13	12	20	30	47	"	21	- 37			
	12/3,9	32RD-M	11,5/3,6	180	3m	>3m	2/1	13	12	20	30	47						
	4	24NS-N	3,6	132	2m	> 3m	4/1	9	6	10	15	20	16	26	36	46	56	66
	4/1,3	24ND-N	3,6/1,5	132	2m	> 3m	4/1	9	6	10	15	20	10	20	00			
	4	34NS-N	5,4	160	3m	> 3m	4/1	13	6	10	15	20	17	27	37			
	4/1,3	34ND-N	5,4/1,7	160	3m	> 3m	4/1	13	6	10	15	20	''		01			
	6	24RS-N	5,4	160	2m	> 3m	4/1	9	6	10	15	20	16	26	36			
	6/1,9	24RD-N	5,4/1,7	160	2m	> 3m	4/1	9	6	10	15	20	10	20	00			
5000	6	34RS-N	7,2	160	3m	> 3m	4/1	13	6	10	15	20						
3000	6/1,9	34RD-N	7,2/2,25	160	3m	> 3m	4/1	13	6	10	15	20						
	8	32NS-N	7,2	160	2m	> 3m	2/1	13	12	20	30	47	17	27	37			
	8/2,6	32ND-N	7,2/2,25	160	2m	> 3m	2/1	13	12	20	30	47	17	21	31			
	12	32RS-N	11,5	180	2m	> 3m	2/1	13	12	20	30	47						
	12/3,9	32RD-N	11,5/3,6	180	2m	> 3m	2/1	13	12	20	30	47						
	12	42RS-N	14,5	200	3m	> 3m	2/1	17	16	24	43	55	18	28	38			
	12/3	42RD-N	14,5/3,5	200	3m	> 3m	2/1	17	16	24	43	55	10	20	00			
	4	34NS-P	5,4	160	2m	> 3m	4/1	13	6	10	15	20						
	4/1,3	34ND-P	5,4/1,7	160	2m	> 3m	4/1	13	6	10	15	20						
	6	34RS-P	7,2	160	2m	> 3m	4/1	13	6	10	15	20	17	27	37			
	6/1,9	34RD-P	7,2/2,25	160	2m	> 3m	4/1	13	6	10	15	20	"		01	47	57	67
6300	8	33NS-P	11,5	180	1Am	> 3m	2/1	13	12	20	30	47				*/	01	01
0000	8/2,6	32ND-P	11,5/3,6	180	1Am	> 3m	2/1	13	12	20	30	47						
	8	42NS-P	11,5	180	3m	> 3m	2/1	17	16	24	43	55						
	8/2	42ND-P	11,5/3,6	180	3m	> 3m	2/1	17	16	24	43	55	18	28	38			
	12	42RS-P	14,5	200	2m	> 3m	2/1	17	16	24	43	55	10	20	- 50			
	12/3	42RD-P	14,5/3,5	200	2m	> 3m	2/1	17	16	24	43	55						

 $^{1)}\,\text{The}$ stated speed are referred to frequency of 50~Hz

 $^{2)}$ Type of hoist defined by the "root of the technical code" with the addition of speed (S or D)

 $^{3)}\,\text{The stated powers are referred to supply voltage of 400 V at 50 Hz$

 $^{\rm 4)}\,\text{The}$ electrical characteristics of the motors are stated at a pag. 30

Motor type 71 ⁴⁾

Motor type 90 ⁴⁾

Motor type 100 ⁴⁾

		ELECTRIC I	Motors power "VT" S	SERIES, RELATED TO TR	AVELLING SPEED (m/n	nin)	
		ONE SPEE	D TROLLEYS		Two Spee	D TROLLEYS	VARIABLE SPEED TROLLEYS
Motor Type	4 POLES	MOTOR	2 POLES	MOTOR	2/8 POL	ES MOTOR	2 POLES MOTOR + "INVERTER"
1112	8 m/min	10 m/min	16 m/min	20 m/min	16/4 m/min	20/5 m/min	DA 2 A 60 m/min
71	0,16	kW	0,32	kW	0,32/0),7 kW	0,38 kW
90	0,25	kW	0,5	kW	0,5/0,	12 kW	0,6 kW
100	0,55	kW	1,1	kW	1,1/0,	27 kW	1,3 kW

Features and technical data

			Eı	ECTRIC WIRE R	OPE HOISTS "V	F" SERIES								ELECTR	IC TROLL	EYS "VT	" SERIES	
	1)	2)	3)	4)	SERVICE G	ROUP FEM	Ro)PE	- 1	IFTING HE	EIGHT (M	1)			TROLL	EY TYPE		
CAPACITY	SPEED	Hoist	INSTALLED POWER	Motor	Hoist	Motor Brake	FALL	Ø			RUM SIZE	-	Mon	ORAIL VE	RSION	Bıı	RAIL VERS	SION
kg	m/min	Түре	kW	Туре	ASSEMBLY	Ø DRUM	N°	mm	1	2	3	4	1	2	3	4	5	6
	4	34NS-Q	7,2	160	3m	> 3m	4/1	13	6	10	15	20						
	4/1,3	34ND-Q	7,2/2,25	160	3m	> 3m	4/1	13	6	10	15	20	17	27	27			
	6	34RS-Q	11,5	180	3m	> 3m	4/1	13	6	10	15	20	17	21	37			
8000	6/1,9	34RD-Q	11,5/3,6	180	3m	> 3m	4/1	13	6	10	15	20						
8000	8	42NS-Q	11,5	180	2m	> 3m	2/1	17	16	24	43	55						
	8/2	42ND-Q	11,5/3,6	180	2m	> 3m	2/1	17	16	24	43	55	18	28	38			
	12	42RN-Q	22,5	200	2m	> 3m	2/1	17	16	24	43	55	10	20	30			
	12/3	42RD-Q	22,5/5,3	200	2m	> 3m	2/1	17	16	24	43	55						
	2	38NS-R	5,4	160	3m	> 3m	8/1	13	3	5	7,5	10				47	57	67
	2/0,6	38ND-R	5,4/1,7	160	3m	> 3m	8/1	13	3	5	7,5	10						
	3	38RS-R	7,2	160	3m	> 3m	8/1	13	3	5	7,5	10	=		=			
	3/0,9	38RD-R	7,2/2,25	160	3m	> 3m	8/1	13	3	5	7,5	10						
	4	34NS-R	7,2	160	2m	> 3m	4/1	13	6	10	15	20						
	4/1,3	34ND-R	7,2/2,25	160	2m	> 3m	4/1	13	6	10	15	20	17	27	37			
10000	6	34RS-R	11,5	180	2m	> 3m	4/1	13	6	10	15	20	17	21	31			
10000	6/1,9	34RD-R	11,5/3,6	180	2m	> 3m	4/1	13	6	10	15	20						
	6	44RSR	14,5	200	3m	> 3m	4/1	17	8	12	18	24						
	6/1,5	44RD-R	14,5/3,5	200	3m	> 3m	4/1	17	8	12	18	24						
	8	42NS-R	14,5	200	2m	> 3m	2/1	17	16	24	43	55	18	28	38			
	8/2	42ND-R	14,5/3,5	200	2m	> 3m	2/1	17	16	24	43	55	10	20	30			
	12	42RS-R	22,5	200	2m	> 3m	2/1	17	16	24	43	55						
	12/3	42RD-R	22,5/5,3	200	2m	> 3m	2/1	17	16	24	43	55						
	2	38NS-S	5,4	160	2m	> 3m	8/1	13	3	5	7,5	10						
	2/0,6	38ND-S	5,4/1,7	160	2m	> 3m	8/1	13	3	5	7,5	10	=	_	=			
	3	38RS-S	7,2	160	2m	> 3m	8/1	13	3	5	7,5	10						
	3/0,9	38RD-S	7,2/2,25	160	2m	> 3m	8/1	13	3	5	7,5	10						
12500	4	44NS-S	11,5	180	3m	> 3m	4/1	17	8	12	18	24						
12500	4/1	44ND-S	11,5/3,6	180	3m	> 3m	4/1	17	8	12	18	24						
	6	44RS-S	14,5	200	2m	> 3m	4/1	17	8	12	18	24	18	28	38			
	6/1,5	44RD-S	14,5/3,5	200	2m	> 3m	4/1	17	8	12	18	24	10	20	30			
	10	42VN-S	22,5	200	1Am	> 3m	2/1	17	16	24	43	55				48	58	68
	10/2,5	42VD-S	22,5/5,3	200	1Am	> 3m	2/1	17	16	24	43	55				40	30	00
	2	38NS-T	7,2	160	3m	> 3m	8/1	13	3	5	7,5	10						
	2/0,6	38ND-T	7,2/2,25	160	3m	> 3m	8/1	13	3	5	7,5	10						
	3	38RS-T	11,5	180	3m	> 3m	8/1	13	3	5	7,5	10	=	=	=			
16000	3/0,9	38RD-T	11,5/3,6	180	3m	> 3m	8/1	13	3	5	7,5	10						
10000	4	44NS-T	11,5	180	2m	> 3m	4/1	17	8	12	18	24						
	4/1	44ND-T	11,5/3,6	180	2m	> 3m	4/1	17	8	12	18	24	19	20	39			
	6	44RS-T	22,5	200	2m	> 3m	4/1	17	8	12	18	24	18	28	38			
	6/1,5	44RD-T	22,5/5,3	200	2m	> 3m	4/1	17	8	12	18	24						

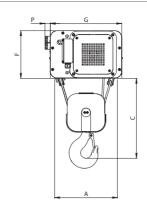
 $^{^{\}rm 1)}$ The stated speed are referred to frequency of 50~Hz

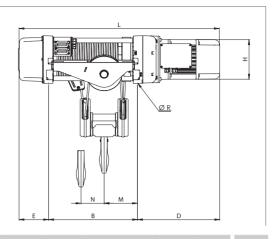
Motor type 90 4) Motor type 100 4)

²⁾ Type of hoist defined by the "root of the technical code" with the addition of speed (S or D)

3) The stated powers are referred to supply voltage of 400 V at 50 Hz

 $^{^{4)}}$ The electrical characteristics of the motors are stated at a pag. 30

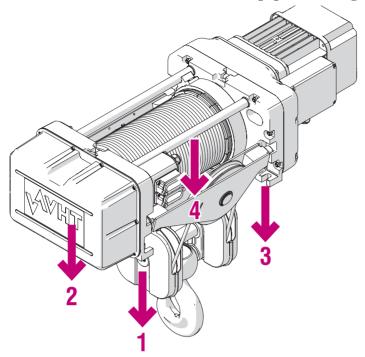



			F	ARANCHI ELETT	RICI A FUNE SE	RIE "VF"								CARRE	LLI ELETT	RICI SER	ie "VT"	
Portata	1)	2)	3) Potenza	4)	GRUPPO DI S	SERVIZIO FEM	Fu	JNE	C	ORSA GA	ncio (m	1)		Ver	RSIONE D	EL CARR	ELLO	
FURIAIA	VELOCITÀ	TIPO	INSTALLATA	Motore	PARANCO	Motore Freno	TIRI	Ø	CC	ON TAMBI	JRO MISU	RA	N	IONOTRA	/E		BITRAVE	
kg	m/min		kW	TIPO	NEL SUO INSIEME	Ø TAMBURO	N°	mm	1	2	3	4	1	2	3	4	5	6
	2	38NS-U	7,2	160	2m	> 3m	8/1	13	3	5	7,5	10						
	2/0,6	38ND-U	7,2/2,25	160	2m	> 3m	8/1	13	3	5	7,5	10						
	3	38RS-U	11,5	180	2m	> 3m	8/1	13	3	5	7,5	10						
	3/0,9	38RD-U	11,5/3,6	180	2m	> 3m	8/1	13	3	5	7,5	10	=	=	=			
20000	3	48RS-U	14,5	200	3m	> 3m	8/1	17	4	6	9	12				48	58	68
20000	3/0,9	48RD-U	14,5/3,5	200	2m	> 3m	8/1	17	4	6	9	12				40	30	- 00
	4	44NS-U	14	200	2m	> 3m	8/1	17	8	12	18	24						
	4/1	44RD-U	14,5/3,5	200	2m	> 3m	4/1	17	8	12	18	24	18	28	39			
	6	44RS-U	22,5	200	2m	> 3m	4/1	17	8	12	18	24	10	20	03			
	6/1,5	44RD-U	22,5/5,3	200	2m	> 3m	4/1	17	8	12	18	24						
	2	48NS-V	11,5	180	3m	> 3m	4/1	17	4	6	9	12						
	2/0,5	48ND-V	11,5/3,6	180	3m	> 3m	8/1	17	4	6	9	12						
25000	3	48RS-V	14,5	200	2m	> 3m	8/1	17	4	6	9	12						
20000	3/0,7	48RD-V	14,5/3,5	200	2m	> 3m	8/1	17	4	6	9	12						
	5	44VS-V	22,5	200	1Am	> 3m	8/1	17	8	12	18	24						
	5/1,2	44VD-V	22,5/5,3	200	1Am	> 3m	4/1	17	8	12	18	24				_	_	
	2	48NS-W	11,5	180	2m	> 3m	4/1	17	4	6	9	12				_	_	
32000	2/0,5	48ND-W	11,5/3,6	180	2m	> 3m	8/1	17	4	6	9	12	=	=	_	5)	5)	5)
	3	48RN-W	22,5	200	2m	> 3m	8/1	17	4	6	9	12				49	59	69
	3/0,7	48RD-W	22,5/5,3	200	2m	> 3m	8/1	17	4	6	9	12						
	2	48NS-Y	14,5	200	2m	> 3m	8/1	17	4	6	9	12						
40000	2/0,5	48ND-Y	14,5/3,5	200	2m	> 3m	8/1	17	4	6	9	12						
	3	48RN-Y	22,5	200	2m	> 3m	8/1	17	4	6	9	12						
	3/0,7	48RD-Y	22,5/5,3	200	2m	> 3m	8/1	17	4	6	9	12						
50000	2,5	48VS-Z	22,5	200	1Am	> 3m	8/1	17	4	6	9	12						
30000	2,5/0,6	48VD-Z	22,5/5,3	200	1Am	> 3m	8/1	17	4	6	9	12						

Motor type 4)

		ELECTRIC N	MOTORS POWER "VT" S	SERIES, RELATED TO TR	AVELLING SPEED (m/m	nin)	
		ONE SPEE	D TROLLEYS		Two Speed	O TROLLEYS	VARIABLE SPEED TROLLEYS
Motor Type	4 POLES	MOTOR	2 POLES	MOTOR	2/8 POLE	ES MOTOR	2 POLES MOTOR + "INVERTER"
1112	8 m/min	10 m/min	16 m/min	20 m/min	16/4 m/min	20/5 m/min	DA 2 A 60 m/min
90	0,25	kW	0,5	kW	0,5/0,	12 kW	0,6 kW
100	0,55	kW	1,1	kW	1,1/0,2	27 kW	1,3 kW

The stated speed are referred to frequency of 50 Hz
 Type of hoist defined by the "root of the technical code" with the addition of speed (S or D)
 The stated powers are referred to supply voltage of 400 V at 50 Hz
 The electrical characteristics of the motors are stated at a pag. 30
 Trolley execution with double motoreducer



HOIST SIZE	N°	LIFTING HEIGHT						OVERALL I	DIMENSIONS	(mm)						WEIGHT
VF SERIES	OFF ALL	(m)	Α	В	С	D	Е	F	G	Н	L	M	N	Р	ØR	(kg)
		12		450							1030		175			140
	2/1	20		670	450						1250	100	265			160
	<i>L</i> / I	35		1100	700						1680	100	360			185
1		45	325	1380		420	160	245	370	210	1960		470	32	15	205
•		6	020	450		120	100		010	210	1030		100	. 02		145
	4/1	10		670	390						1250	160	180			165
	_ ′′	15		1100							1680		220			190
		20		1380							1960		280			210
-		12		500							1170		200			180
-	2/1	20		730	520						1400	110	290			205
		36		1200							1870		380			220
2		46 6	365	1490		490	180	275	415	230	2160		470	30	17	240
		10		500 730							1170 1400		120 220			190 215
-	4/1	15		1200	465						1870	195	270			230
		20		1490							2160		330			250
		12		595							1415		250			450
		20		870							1690		360			550
	2/1	37		1490	700						2310	140	470			590
		47		1830							2650		590			630
3		6	470	595		600	220	365	540	270	1415		150	20	21	475
-		10		870	000						1690	0.50	240			575
	4/1	15		1490	630						2310	250	270			615
		20		1830							2650		340			645
		16		790							1830		270			820
	2/1	24		1070	920						2110	170	370			950
	_ 2/1	45		1850	320						2890	_170	550			1030
4		57	570	2250		800	240	450	660	305	3290		710	15	25	1160
•		8	- 010	790							1830		170			970
	4/1	12		1070	850						2110	300	250			1100
	., .	18		1850							2890		300			1180
		24		2250							3290		390			1310

		CHANGE IN DIMENSIONS (T	nm) and in weights (kg) of hoists V	F SERIES IN RELATION TO THE TYPE OF M	OTOR USED
HOIST SIZE VF SERIES	DATA IN TABLE WITH		Use of the ho	IST WITH OVERSIZED MOTOR	
	MOTOR TYPE	Түре	Increase of dimensions L e D	INCREASE OF DIMENSION H	INCREASE OF WEIGHT
1	112	132	dimension in table + 50 mm	dimension in table +20 mm	weight in table +15 mm
2	132	160	dimension in table + 70 mm	dimension in table +40 mm	weight in table +20 mm
3	160	180	dimension in table + 90 mm	dimension in table +35 mm	weight in table +35 mm
4	180	200	dimension in table + 120 mm	dimension in table +45 mm	weight in table +45 mm

Static reactions at the supporting feet

Reactions caused by static vertical load lifted Q with hook in maximum upper position (see quote on p. 22)

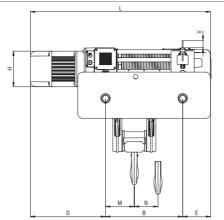
$$R_{Q1} = R_{Q2} = \frac{Q \times M}{2 \times B}$$

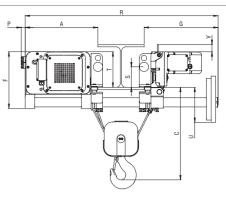
$$R_{Q3} = R_{Q4} = \frac{Q \times (B - M)}{2 \times B}$$

Reactions caused by static vertical load lifted Q with hook in maximum lower position (see quote on p. 22)

$$R_{_{Q1}}=R_{_{Q2}}=\frac{Q\,x\,(\,M+N\,)}{2\,x\,B}$$

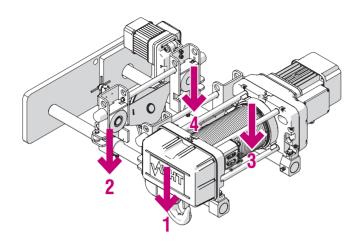
$$R_{Q3} = R_{Q4} = \frac{Q \times (B - M - N)}{2 \times B}$$


Reactions vertical static caused by its own weight **G** (the real position of the barycenter of the masses leads to insignificant variations of the values of the reactions)


$$R_{\rm G1} = R_{\rm G2} = R_{\rm G3} = R_{\rm g4} = \frac{G}{4}$$

- The values obtained through the formulas above mentioned refer to vertical static reactions to the supporting feet and must be multiplied with the appropriate dynamic coefficients φ and composed in accordance with the load combinations defined in the rules of calculation (eg EN 13001-2, EN 15 011).
- The reactions are divided into the components due to the load Q and the own weights G in order to allow the designer of the supporting structures of the hoist, a correct evaluation applying to each of them a partial safety factor γ_ρ.

Electric wire rope hoists VF series at 2 and 4 falls with short headroom monorail trolley



HOIST SIZE	N° OF	LIFTING HEIGHT							(OVERALL I	DIMENSIONS	(mm)							WEIGHT
VF SERIES	FALL	(m)	Α	В	С	D	Е	F	G	Н	L	M	N	Р	R	S	Т	U	V	(kg)
		12		450							1030		175							320
	2/1	20		670	710						1250	100	265							360
		30		1100							1680		360							415
1		40 6	420	1380 450		420	160	330	410	210	1960 1030		470 100	32	1130	120	215	210	48	465 325
_		10		670							1250		180							365
	4/1	15		1100	580						1680	160	220							420
		20		1380							1960		280							470
		12		500							1170		200							380
	2/1	20		730	720						1400	110	290							420
_	<i>L</i> / I	30		1200	120						1870	110	380							450
2		40	470	1490		490	180	370	480	230	2160		470	30	1250	133	230	225	48	520
		6 10		500							1170		120							390
	4/1	15		730 1200	600						1400 1870	195	220							430 460
		20		1490							2160		330							530
		12		595							1415		250							790
	2/1	20		870	770						1690	140	360							930
	2/1	30		1490	770						2310	140	470							1100
3		40	610	1830		600	220	475	650	270	2650		590	20	1560	170	320	270	48	1180
		6		595							1451		150							815
-	4/1	10		870	640						1690	250	240							955
-		15 20		1490							2310 2650		270 340							1125 1205
		16		790							1830		270							1320
		24		1070							2110		370							1620
	2/1	36		1850	880						2890	170	550							1680
4		48	750	2250		800	240	580	800	305	3290		710	15	1850	195	350	330	48	1910
•		8	700	790		000	240	000	000	000	1830		170		1000	100	000	000	- 10	1470
	4/1	12		1070	790						2110	300	250							1670
		18 24		1850 2250							2890 3290		300							1830 2060
		Z4 -		2230							3290		390							2000

	Change in dimensions (mm) and in weights (kg) of hoists VF series in relation to the type of motor used							
HOIST SIZE VF SERIES	DATA IN TABLE WITH	Use of the hoist with oversized motor						
	MOTOR TYPE	Түре	INCREASE OF DIMENSION L E D	INCREASE OF DIMENSION H	INCREASE OF WEIGHT			
1	112	132	dimension in table + 50 mm	dimension in table +20 mm	weight in table +15 mm			
2	132	160	dimension in table + 70 mm	dimension in table +40 mm	weight in table +20 mm			
3	160	180	dimension in table + 90 mm	dimension in table +35 mm	weight in table +35 mm			
4	180	200	dimension in table + 120 mm	dimension in table +45 mm	weight in table +45 mm			

Static reaction to the trolley wheels

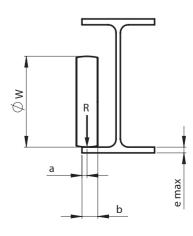
Reactions caused by static vertical load lifted Q with hook in maximum upper position (see quote on p. 24)

$$R_{Q1} = R_{Q2} = \frac{Q \times M}{2 \times B}$$

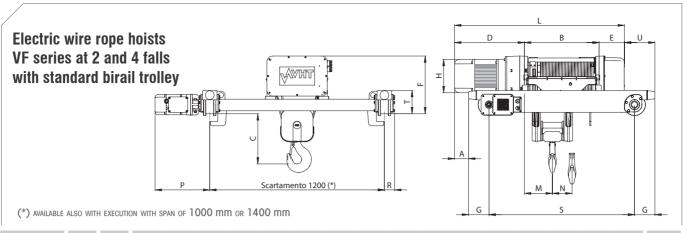
$$R_{Q3} = R_{Q4} = \frac{Q \times (B - M)}{2 \times B}$$

Reactions caused by static vertical load lifted Q with hook in maximum lower position (see quote on p. 24)

$$R_{Q1} = R_{Q2} = \frac{Q x (M + N)}{2 x B}$$

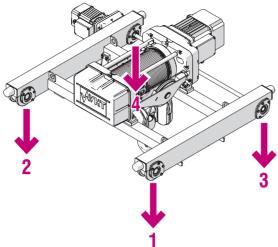

$$R_{Q3} = R_{Q4} = \frac{Q \times (B - M - N)}{2 \times B}$$

Reactions vertical static caused by its own weight **G** (the real position of the barycenter of the masses leads to insignificant variations of the values of the reactions)


$$R_{\rm G1} = R_{\rm G2} = R_{\rm G3} = R_{\rm g4} = \frac{G}{4}$$

- The values obtained through the formulas above mentioned refer to vertical static reactions to the supporting feet and must be multiplied with the appropriate dynamic coefficients φ and composed in accordance with the load combinations defined in the rules of calculation (eg EN 13001-2, EN 15 011).
- The reactions are divided into the components due to the load Q and the own weights G so as to allow the designer of the supporting structures of the hoist, a correct evaluation applying to each of them a partial safety factor γ_ρ.
- The horizontal reactions must be calculated on the basis of maximum acceleration at full load equal to 0.16 m/s2 and φ coefficients to be evaluated according to the type of drives of the trolley as shown in the reference standards (eg EN 13001 -1, EN 13001-2, EN 15 011).

	Position of 1	THE WHEELS ON THE BEAM FL	ANGE (MM)	
TROLLEY VT	ØW	а	b	e (MAX)
15	100	11	31	30
16	125	11	31	30
17	160	14	40	35
18	200	16	50	40



HOIST SIZE	N° of	LIFTING HEIGHT							OVERA	ALL DIMEN	NSIONS (N	nm)							WEIGHT
VF SERIES	FALL	(m)	Α	В	С	D	Е	F	G	Н	L	M	N	Р	R	S	Т	U	(kg)
		12	25	450							1030		175			1000		280	250
	2/1	20		670	340						1250	100	265			1000			290
	2/1	30	140	1100	340						1680	100	360			1470		165	330
1		40		1380		420	160	370	140	210	1960		470	375	70	1760	160		365
		6	25	450		120	100	0.0	110		1030		100	0.0		1000	100	280	255
	4/1	10		670	280						1250	160	180						295
	,, ,	15	140	1100							1680		220			1470		165	335
		20		1380							1960		280			1760			370
		12	95	500							1170		200			1000		210	290
	2/1	20	0.1.0	730	400						1400	110	290			4.470		0.5	335
		30	210	1200							1870		380			1470		95	365
2		40 6	95	1490		490	180	400	140	230	2160		470	375	70	1760	160	010	400 300
		10	90	500 730							1170		120 220			1000		210	345
	4/1	15	210	1200	345						1870	195	270			1470		95	375
		20	210	1490							2160		330			1760			410
		12	153	595							1415		250					237	665
		20		870							1690		360			1180			790
	2/1	30	290	1490	555						2310	140	470			1800		100	860
		40		1830							2650		590			2140			910
3		6	143	595		600	220	510	160	270	1451		150	470	85	4400	192	237	690
	4.4	10		870	405						1690	050	240			1180			815
	4/1	15	280	1490	485						2310	250	270			1800		100	885
		20		1830							2650		340			2140			935
		16	270	790							1830		270			1450		290	1090
	2/1	24		1070	730						2110	170	370			1430			1250
	2/1	36	410	1850	750						2890	170	550			2230		150	1400
4		48		2250		800	240	640	200	305	3290		710	525	95	2630	230		1590
		8	270	790							1830		170			1450		290	1240
	4/1	12		1070	660						2110	300	250						1400
		18	410	1850							2890		300			2230		150	1550
		24		2250							3290		390			2630			1740

		CHANGE IN DIMENSIONS (nm) and in weights (kg) of hoists V	F SERIES IN RELATION TO THE TYPE OF M	OTOR USED			
HOIST SIZE VF SERIES	DATA IN TABLE WITH	Use of the hoist with oversized motor						
VI OLIGIEO	MOTOR TYPE	Туре	INCREASE OF DIMENSION L E D	INCREASE OF DIMENSION H	INCREASE OF WEIGHT			
1	112	132	dimension in table + 50 mm	dimension in table +20 mm	weight in table +15 mm			
2	132	160	dimension in table + 70 mm	dimension in table +40 mm	weight in table +20 mm			
3	160	180	dimension in table + 90 mm	dimension in table +35 mm	weight in table +35 mm			
4	180	200	dimension in table + 120 mm	dimension in table +45 mm	weight in table +45 mm			

Static reaction to the trolley wheels

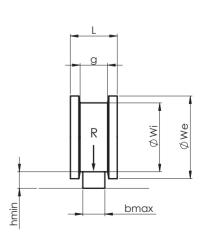
Reactions caused by static vertical load lifted Q with hook in maximum upper position (see quote on p. 26)

$$R_{Q1} = R_{Q2} = \frac{Q \times (M + m_o)}{2 \times S}$$

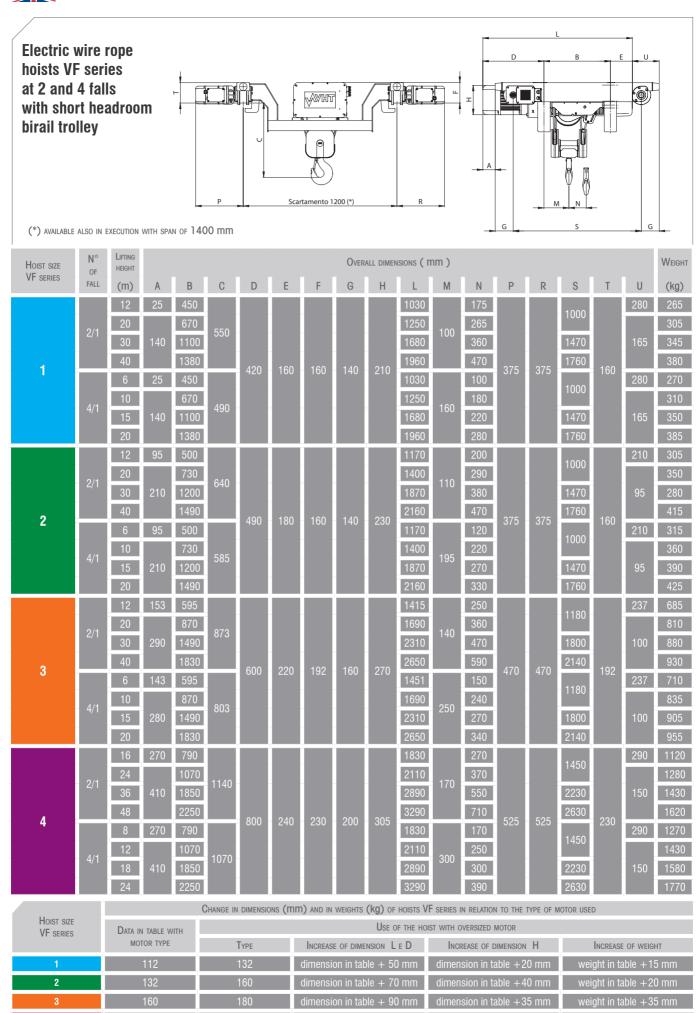
$$R_{Q3} = R_{Q4} = \frac{Q \times (S - M - m_o)}{2 \times S}$$

Reactions caused by static vertical load lifted Q with hook in maximum lower position (see quote on p. 26)

$$R_{Q1} = R_{Q2} = \frac{Q \times (M + N + m_o)}{2 \times S}$$

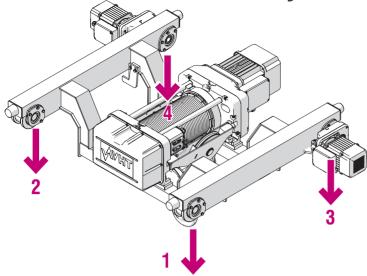

$$R_{Q3} = R_{Q4} = \frac{Q \times (S - M - N - m_o)}{2 \times S}$$

Reactions vertical static caused by its own weight **G** (the real position of the barycenter of the masses leads to insignificant variations of the values of the reactions)


$$R_{\rm G1} = R_{\rm G2} = R_{\rm G3} = R_{\rm g4} = \frac{G}{4}$$

- $m_0 = D A G$ (see quote on p. 26)
- The values obtained through the formulas above mentioned refer to vertical static reactions to the supporting feet and must be multiplied with the appropriate dynamic coefficients φ and composed in accordance with the load combinations defined in the rules of calculation (eg EN 13001-2, EN 15 011).
- The reactions are divided into the components due to the load Q and the own weights G so as to allow the designer of the supporting structures of the hoist, a correct evaluation applying to each of them a partial safety factor γ_c.
- The horizontal reactions must be calculated on the basis of maximum acceleration at full load equal to 0.16 m/s2 and φ coefficients to be evaluated according to the type of drives of the trolley as shown in the reference standards (eg EN 13001 -1, EN 13001-2, EN 15 011).

	Р	OSITION OF THE WHE	EL ON THE RAIL OF E	BIRAIL TROLLEY (MM	1)	
TROLLEY VT	ØWi	ØWe	L	g	h min	b max
46	125	150	85	50	30	40
47	160	190	95	55	30	45
48	200	230	105	60	30	50
49	250	280	115	70	30	60



Static reaction to the trolley wheels

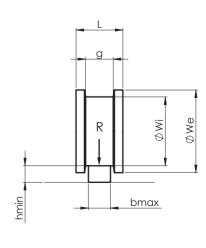
Reactions caused by static vertical load lifted Q with hook in maximum upper position (see quote on p. 28)

$$R_{Q1} = R_{Q2} = \frac{Q \times (M + m_o)}{2 \times S}$$

$$R_{Q3} = R_{Q4} = \frac{Q \times (S - M - m_o)}{2 \times S}$$

Reactions caused by static vertical load lifted Q with hook in maximum lower position (see quote on p. 28)

$$R_{Q1} = R_{Q2} = \frac{Q \times (M + N + m_o)}{2 \times S}$$


$$R_{Q3} = R_{Q4} = \frac{Q \times (S - M - N - m_o)}{2 \times S}$$

Reactions vertical static caused by its own weight **G** (the real position of the barycenter of the masses leads to insignificant variations of the values of the reactions)

$$R_{G1} = R_{G2} = R_{G3} = R_{g4} = \frac{G}{4}$$

- $m_0 = D A G$ (see quote on p. 28)
- The values obtained through the formulas above mentioned refer to vertical static reactions to the supporting feet and must be multiplied with the appropriate dynamic coefficients φ and composed in accordance with the load combinations defined in the rules of calculation (eg EN 13001-2, EN 15 011).
- The reactions are divided into the components due to the load Q and the own weights G so as to allow the designer of the supporting structures of the hoist, a correct evaluation applying to each of them a partial safety factor γ_o.
- The horizontal reactions must be calculated on the basis of maximum acceleration at full load equal to 0.16 m/s2 and ☐ coefficients to be evaluated according to the type of drives of the trolley as shown in the reference standards (eg EN 13001 -1, EN 13001-2, EN 15 011).

	Position of the wheel on the rail of birail trolley (mm)											
TROLLEY VT	ØWi	ØWe	L	g	h min	b max						
66	125	150	85	50	30	40						
67	160	190	95	55	30	45						
68	200	230	105	60	30	50						
69	250	280	115	70	30	60						

Characteristics of the electric motors

		THREE-PHASES	ASYNCHRONOUS MOT	ORS, FOR ELECTRIC V	VIRE ROPE HOISTS "V	F" SERIES AND TROLL	EY "VT" SERIES			
M-		Installed		Absorbei	CURRENT	Power	PROTECTION	POWER SUPPLY CABLE		
Mot	OR	POWER	Polarities	Nominal In	STARTING LA	FACTOR	FUSES	Section of the cable \emptyset	LENGHT MAX.	
Uso	Түре	kW	N° POLES	А	А	Cos. Φ	А	mm²	m	
		2,3	4	6,8	33	0,7				
112	2,3/0,73	4/12	6,5/5,3	32/11	0,71/0,5					
	2,75 (*)	4	7,2	36	0,75	16	2,5			
		3,6	4	8,8	45	0,72	10	2,0		
	132	3,6/1,15	4/12	8,5/7	43/16	0,78/0,52				
		4,3(*)	4	9,5	48	0,74				
		5,4	4	14	65	0,74				
		5,4/1,7	4/12	13/11	59/21	0,78/0,55	20		≤ 30	
	100	6,5 (*)	4	16	76	0,79		4		
	160	7,2	4	18	86	0,78		4		
HOIST "VF" SERIES		7,2/2,25	4/12	17/13	80/25	0,8/0,51	25			
180		8,6 (*)	4	19	91	0,82				
		11,5	4	25	110	0,81	20			
	180	11,5/3,6	4/12	24/18	106/30	0,8/0,54	32	6		
		13,8	4	27	122	0,84	40			
		14,5	4	36	162	0,82	F0	10		
		14,5/3,5	4/16	35/24	157/45	0,81/0,52	50			
	000	17,4	4	38	172	0,84	63		. 00	
	200	22,5	4	46	210	0,84		16	≤ 20	
		22,5/5,3	4/16	45/28	200/53	0,82/0,52	80			
		27(*)	4	52	240	0,85				
		0,16	4	0,8	2,8	0,65				
	74	0,32	2	1,2	4,6	0,7				
	71	0,32/0,07	2/8	0,9/0,7	4,1/1,4	0,75/0,5				
		0,38 (*)	2	1,3	5	0,77	4		100	
		0,25	4	1,1	4,3	0,68	4		≤ 100	
TROLLEY	00	0,5	2	1,4	5,2	0,75		1.5		
T"VT" SERIES	90	0,5/0,12	2/8	1,3/1,1	4,9/1,8	0,82/0,55		1,5		
		0,6 (*)	2	1,5	5,7	0,78				
		0,55	4	1,6	6,1	0,73				
-	400	1,1	2	2,7	11	0,81				
	100	1,1/0,27	2/8	2,6/1,7	9,8/3,1	0,82/0,55	6		≤ 70	
		1,3 (*)	2	2,9	13	0,84				

Characteristics referred at motors with supply voltage of 400 V and frequency of 50 Hz;

⁽ *) Motors suitable for frequency converter ("inverter") with limit of use of min. 5 Hz and max. 60 Hz.

